from django.conf import settings
from django.db import transaction
from django.db.models import ExpressionWrapper, F, FloatField, Q, Sum, Value, Window
from django.db.models.functions import DenseRank
from django.dispatch import receiver
from pgvector.django import CosineDistance
from torque.signals import search_filter, search_index_rebuilt, update_cache_document

from semantic_search.llm import llm
from semantic_search.models import SemanticSearchCacheDocument


@receiver(update_cache_document)
def update_semantic_cache_document(sender, **kwargs):
    cache_document = kwargs["cache_document"]
    filtered_data = kwargs["filtered_data"]
    document_dict = kwargs["document_dict"]

    with transaction.atomic():
        SemanticSearchCacheDocument.objects.filter(
            search_cache_document=cache_document
        ).delete()

        embedding_data = {}

        for filter in getattr(settings, "SEMANTIC_SEARCH_ADDITIONAL_FILTERS", []):
            embedding_data[filter.name()] = filter.document_value(document_dict)

        embedding_data.update(filtered_data)

        data_text = ""
        for name, value in embedding_data.items():
            name = name.replace("_", " ")
            if isinstance(value, list):
                for v in value:
                    data_text += f"{name} is {v}. "
            elif value:
                data_text += f"{name} is {value}. "

        embeddings = llm.get_embeddings(data_text)

        semantic_search_cache_documents = [
            SemanticSearchCacheDocument(
                search_cache_document=cache_document,
                data=data_text,
                data_embedding=embedding,
            )
            for embedding in embeddings
        ]

        SemanticSearchCacheDocument.objects.bulk_create(semantic_search_cache_documents)


@receiver(search_index_rebuilt)
def rebuild_semantic_search_index(sender, **kwargs):
    pass


@receiver(search_filter)
def semantic_filter(sender, **kwargs):
    similarity = getattr(settings, "SEMANTIC_SEARCH_SIMILARITY", 0.7)

    cache_documents = kwargs["cache_documents"]
    qs = kwargs.get("qs")

    if qs:
        embeddings = llm.get_embeddings(qs, prompt_name="query")

        distances = {
            f"distance_{i}": CosineDistance(
                "semantic_documents__data_embedding", embedding
            )
            for i, embedding in enumerate(embeddings)
        }

        filter_q = Q()
        for i in range(len(embeddings)):
            filter_q |= Q(**{f"distance_{i}__lte": similarity})

        results = (
            cache_documents.annotate(**distances)
            .filter(filter_q)
            .order_by("distance_0")  # sorted by the first query's distance
        )

        return results