from django.conf import settings from django.db import transaction from django.db.models import ExpressionWrapper, F, FloatField, Q, Sum, Value, Window from django.db.models.functions import DenseRank from django.dispatch import receiver from pgvector.django import CosineDistance from torque.signals import search_filter, search_index_rebuilt, update_cache_document from semantic_search.llm import llm from semantic_search.models import SemanticSearchCacheDocument @receiver(update_cache_document) def update_semantic_cache_document(sender, **kwargs): cache_document = kwargs["cache_document"] filtered_data = kwargs["filtered_data"] document_dict = kwargs["document_dict"] with transaction.atomic(): SemanticSearchCacheDocument.objects.filter( search_cache_document=cache_document ).delete() embedding_data = {} for filter in getattr(settings, "SEMANTIC_SEARCH_ADDITIONAL_FILTERS", []): embedding_data[filter.name()] = filter.document_value(document_dict) embedding_data.update(filtered_data) data_text = "" for name, value in embedding_data.items(): name = name.replace("_", " ") if isinstance(value, list): for v in value: data_text += f"{name} is {v}. " elif value: data_text += f"{name} is {value}. " embeddings = llm.get_embeddings(data_text) semantic_search_cache_documents = [ SemanticSearchCacheDocument( search_cache_document=cache_document, data=data_text, data_embedding=embedding, ) for embedding in embeddings ] SemanticSearchCacheDocument.objects.bulk_create(semantic_search_cache_documents) @receiver(search_index_rebuilt) def rebuild_semantic_search_index(sender, **kwargs): pass @receiver(search_filter) def semantic_filter(sender, **kwargs): similarity = getattr(settings, "SEMANTIC_SEARCH_SIMILARITY", 0.7) cache_documents = kwargs["cache_documents"] qs = kwargs.get("qs") if qs: embeddings = llm.get_embeddings(qs, prompt_name="query") distances = { f"distance_{i}": CosineDistance( "semantic_documents__data_embedding", embedding ) for i, embedding in enumerate(embeddings) } filter_q = Q() for i in range(len(embeddings)): filter_q |= Q(**{f"distance_{i}__lte": similarity}) results = ( cache_documents.annotate(**distances) .filter(filter_q) .order_by("distance_0") # sorted by the first query's distance ) return results